
Introduction to NaturalX
This section covers the following topics: 

Why NaturalX? 
Programming Techniques 

Why NaturalX?
Software applications that are based on component architecture offer many advantages over traditional designs.
These include the following: 

Faster development. Programmers can build applications faster by assembling software from prebuilt
components. 
Reduced development costs. Having a common set of interfaces for programs means less work integrating the
components into complete solutions. 
Improved flexibility. It is easier to customize software for different departments within a company by just
changing some of the components that constitute the application. 
Reduced maintenance costs. In the case of an upgrade, it is often sufficient to change some of the components
instead of having to modify the entire application. 
Easier distribution. Components encapsulate data structures and functionality in distributable units. 

Using NaturalX you can create component-based applications. 

On Windows platforms you can use NaturalX in conjunction with DCOM. This enables you to: 

allow your components to be accessed by other components, 
execute these components on local and/or remote servers, 
access components written in a variety of programming languages across process and machine boundaries from
within Natural programs, 
provide your existing Natural applications with (quasi) standardized interfaces. 

The following scenario illustrates how a company could exploit these advantages. A company introduces a new sales
management system that is based on an application design using components. There are numerous data entry
components in the application, one for each sales point. But all of these sales point use a common tax calculation
component that runs on a server. If the tax legislation is changed, then only the tax component has to be updated
instead of changing the data entry components at each site. In addition, the life of the programmers is made easier
because they do not have to worry about network programming and the integration of components that are written in
different languages.

On Mainframe and UNIX platforms you can also use NaturalX to apply a component-based programming style.
However, on these platforms the components cannot be distributed and can only run in a local Natural session.

Programming Techniques
This section covers the following topics: 

Object-Based Programming 
Defining Classes 
Defining Interfaces 
Interface Inheritance 

1Copyright Software AG 2003

Introduction to NaturalXIntroduction to NaturalX



Object-Based Programming

NaturalX follows an object-based programming approach. Characteristic for this approach is the encapsulation of
data structures with the corresponding functionality into classes. Encapsulation is a good basis for easy distribution.
Because there are (quasi) standards for the interoperation of software components on the basis of object models, an
object-based approach is also a good basis for making software components interoperable across program, machine
and programming language boundaries.

Defining Classes

In an object-based application, each function is considered to be a service that is provided by an object. Each object
belongs to a class. Clients use the services either to perform a business task or to build even more complex services
and to provide these to other clients. Hence the basic step in creating an application with NaturalX is to define the
classes that form the application. In many cases, the classes simply correspond to the real things that the application
in question deals with, for example, bank accounts, aircraft, shipments etc. There is a wide range of good literature
about object-oriented design, and a number of well-proven methods can be used to identify the classes in a given 
business.

The process of defining a class can be broadly broken down into the following steps: 

Create a Natural module of type class. 
Specify the name of the class using the DEFINE CLASS statement. This name will be used by the clients to
create objects of that class. 
Use the OBJECT clause of the DEFINE DATA statement to define how an object of the class will look
internally. Create a local data area that describes the layout of the object with the data area editor, and assign
this data area in the OBJECT clause. 

These steps are described in more detail in the section Developing Object-Based Natural Applications.

Defining Interfaces

In order to be useful to clients, a class must provide services, which it does through interfaces. An interface is a
collection of methods and properties. A method is a function that an object of the class can perform when requested
by a client. A property is an attribute of an object that a client can retrieve or change. A client accesses the services
by creating an object of the class and using the methods and properties of its interfaces.

The process of defining an interface can be broadly broken down into the following steps: 

Use the INTERFACE clause to specify an interface name. 
Define the properties of the interface with PROPERTY definitions. 
Define the methods of the interface with METHOD definitions. 

These steps are described in more detail in the section Developing Object-Based Natural Applications.

Simple classes only have one interface, but a class may have more than one interface. This possibility can be used to
group methods and properties into one interface that belong to the same functional aspect of the class and to define
different interfaces to handle other functional aspects. For example, an Employee class could have an interface 
Administration that contains all of the methods and properties of the administrative aspects of an employee. This
interface could contain the properties Salary and Department and the method TransferToDepartment. Another
interface Qualifications could contain the qualification aspects of an employee.

Interface Inheritance

Defining several interfaces for a class is the first step towards using interface inheritance, which is a more advanced
method of designing classes and interfaces. This makes it possible to reuse the same interface definition in different
classes. Assume that there is a class Manager, which is to be treated in the same way as the class Employee with

Copyright Software AG 20032

Introduction to NaturalXObject-Based Programming



respect to qualification, but which is to be handled differently as far as administration is concerned. This can be
achieved by having the Qualification interface in both classes. This has the advantage that a client that uses the 
Qualification interface on a given object does not have to check explicitly whether the object represents an Employee
or a Manager. It can simply use the same methods and properties without having to know of what class the object is.
The properties or methods can even be implemented in a different way in both classes provided they are presented
through the same interface definition.

The process of using interface inheritance can be broadly broken down into the following steps: 

Use the INTERFACE statements to define one or more interfaces in a copycode instead of defining them
directly in the class. 
The METHOD and PROPERTY definitions in the INTERFACE statement do not need to contain the IS clause.
At this point, you just define the external appearance of the interface without assigning implementations to the
methods and properties. 
Use the INTERFACE clause to include the copycode with its interface definition in each class that will
implement the interface. 
Use the METHOD and PROPERTY statements to assign implementations to the methods and properties of the
interface in each class that will implement the interface. 

3Copyright Software AG 2003

Interface InheritanceIntroduction to NaturalX


	Introduction to NaturalX
	Why NaturalX?
	Programming Techniques
	Object-Based Programming
	Defining Classes
	Defining Interfaces
	Interface Inheritance



